
Patrick Winter (Universität Marburg)

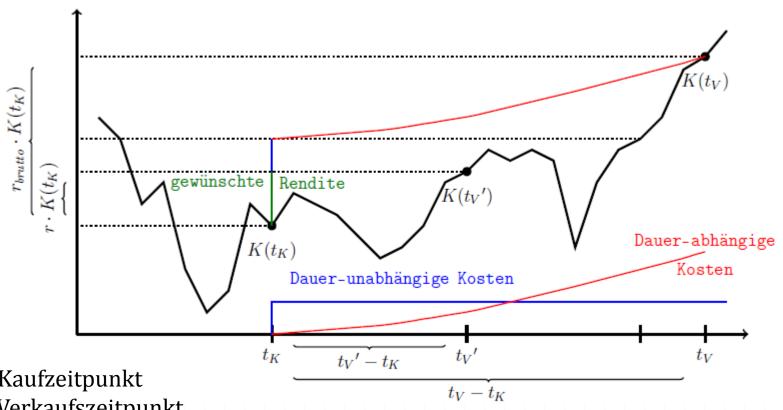
VTAD Award 2015 21.03.2015

Wie lange soll ich noch warten?

Ereigniszeitanalyse im Trading, mit Anwendung auf eine Take-Profit-Strategie

Handelsstrategien

- (-) Schwierig umzusetzen
- (+) Regelt Kauf und Verkauf
- (+) Optimales Ziel wird verfolgt
- (-) Ziel wird "nie" erreicht
- (-) Verlustrisiko
- (0) Geldbindung ist endogen


Rentabilität

Sicherheit

Liquidität

- (+) Einfach umzusetzen
- (-) Regelt nur Verkauf
- (-) Sub-Optimales Ziel wird verfolgt
- (+) Ziel wird "immer" erreicht
- (+) Verlustrisiko existiert u.U. nicht
- (-) Geld evtl. sehr lange gebunden

Netto- vs. Bruttorendite

t_K: Kaufzeitpunkt

t_v: Verkaufszeitpunkt

t_v - t_K: Tradedauer

K: Kurs

Die notwendige Bruttorendite steigt mit der Tradedauer!

Wann kaufen?

- Geringe Tradedauer =
 Geringe Dauer-abhängige Kosten =
 Geringe notwendige Bruttorendite
- O Problem: Wie kann man die erwartete Tradedauer schätzen? → Ereigniszeitanalyse

Ereigniszeitanalyse

- = "Survival Analysis" = Methode aus dem Bereich der Medizin zur Vorhersage von (Rest-)Lebenszeiten
- Ziel: Schätzung der Überlebensfunktion S(t) = P(T > t)
 = Wahrscheinlichkeit dafür, dass ein bestimmtes
 Ereignis T nach einem bestimmten Zeitpunkt t eintritt
- Problemfelder (u.a.):
 - zensierte Beobachtungen
 - Kovariate

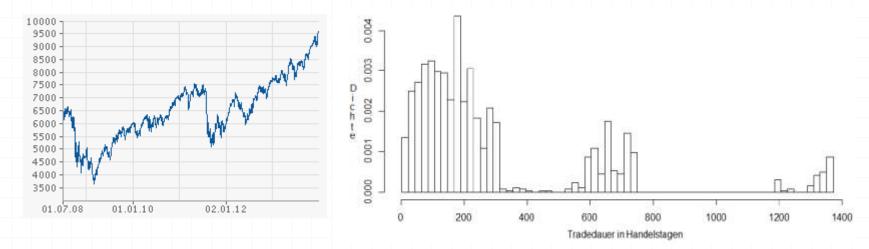
- Verfahren:
 - nicht-parametrische
 - parametrische
 - semi-parametrische

Cox Regression

- O Idee: Modelliere die Hazardrate h(t)=-S'(t)/S(t) semi-parametrisch und rekonstruiere S(t)
- Aus der Kenntnis von S(t) lassen sich dann die erwartete Tradedauer E[T] und deren Varianz Var[T] ableiten
- Modell: $h(t) = h_0(t) \cdot \exp(x'\beta)$
 - o $h_0(t)$ = "Baseline Hazard" = nicht-parametrischer Teil
 - x = Vektor von Einflussfaktoren (s.u.)
 - ρ ρ = Vektor zu schätzender Koeffizienten

Einflussfaktoren

- Unter welchen Umständen ist die Tradedauer gering?
- ✓ Intuitiv: Kaufe dann, wenn der aktuelle Kurs "ungewöhnlich niedrig" ist ⇒ Kurserholung führt evtl. schon zum Ende des Trades
- Operationalisierung mittels gleitender Durchschnitte (MA) des Kurses mit verschiedenen Periodenlängen m:


$$x'\beta = \beta_1 \cdot \log K(t) + \beta_m \cdot \log MA_m(t)$$

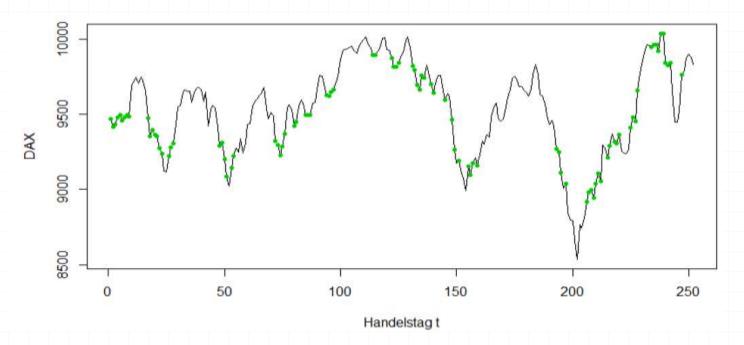
 $m \in \{8, 21, 55, 89, 144, 377\}$

Der MED(α)-Indikator

- Nur eine Anwendung der Ereigniszeitanalyse
- O Definition: Sende zum Zeitpunkt t ein Kaufsignal, wenn
 - o die mittlere erwartete Dauer E[T] ≤ α [und
 - o ihre Varianz Var[T] $\leq \sigma^2$ ist (z.B. $\sigma^2 = \alpha^2/4$)].
- o Durch α gibt der Händler an, wie lange er zu warten bereit ist

Anwendung: Training

- O Das Modell ist anhand historischer Daten zu "trainieren"
- Vorgabe (neben Kosten): 5% gewünschte Nettorendite
- O Daten: DAX 07/2008-2013



Nicht abgeschlossene Trades = zensierte Beobachtungen

Anwendung: Test

ODaten: DAX 2014

O Parameter: Wähle $\alpha = 986 = \emptyset E[T]$

Daneben: langfristige MA's eher signifikant als kurzfristige

Bedeutung

Ich handle nicht nach der Take-Profit-Strategie. Kann ich den $MED(\alpha)$ -Indikator trotzdem nutzen?

O Intuitiv:

E[T] gering
 ⇔

Kursanstieg erwartet

O E[T] hoch

Kursabsenkung erwartet

• Formal:
$$S(t) = P\left(\max_{j=t_K,...,t_K+t} K(j) < K^*\right)$$

o Folgerung: Die Kaufsignale des MED(α)-Indikators sind informativ für jede (gewinnorientierte) Handelsstrategie

Zum Mitnehmen

- Ausblick
 - Vergleich von E[T] zwischen mehreren Anlagealternativen
 - Fundamentale Einflussfaktoren
- ${\it o}$ Der MED(α)-Indikator wurde in der Statistiksoftware R implementiert und kann u.U. zur Verfügung gestellt werden
- O Kontakt:
 Patrick Winter (mail@patrick-winter.de)